Temporal regulation of Drosophila IAP1 determines caspase functions in sensory organ development

نویسندگان

  • Akiko Koto
  • Erina Kuranaga
  • Masayuki Miura
چکیده

The caspases comprise a family of cysteine proteases that function in various cellular processes, including apoptosis. However, how the balance is struck between the caspases' role in cell death and their nonapoptotic functions is unclear. To address this issue, we monitored the protein turnover of an endogenous caspase inhibitor, Drosophila IAP1 (DIAP1). DIAP1 is an E3 ubiquitin ligase that promotes the ubiquitination of caspases and thereby prevents caspase activation. For this study, we developed a fluorescent probe to monitor DIAP1 turnover in the external sensory organ precursor (SOP) lineage of living Drosophila. The SOP divides asymmetrically to make the shaft, socket, and sheath cells, and the neuron that comprise each sensory organ. We found that the quantity of DIAP1 changed dramatically depending on the cell type and maturity, and that the temporal regulation of DIAP1 turnover determines whether caspases function nonapoptotically in cellular morphogenesis or cause cell death.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drosophila IKK-Related Kinase Regulates Nonapoptotic Function of Caspases via Degradation of IAPs

Caspase activation has been extensively studied in the context of apoptosis. However, caspases also control other cellular functions, although the mechanisms regulating caspases in nonapoptotic contexts remain obscure. Drosophila IAP1 (DIAP1) is an endogenous caspase inhibitor that is crucial for regulating cell death during development. Here we describe Drosophila IKK-related kinase (DmIKKvare...

متن کامل

Apoptosis Ensures Spacing Pattern Formation of Drosophila Sensory Organs

BACKGROUND In both vertebrates and invertebrates, developing organs and tissues must be precisely patterned. One patterning mechanism is Notch/Delta-mediated lateral inhibition. Through the process of lateral inhibition, Drosophila sensory organ precursors (SOPs) are selected and sensory bristles form into a regular pattern. SOP cell fate is determined by high Delta expression and following exp...

متن کامل

Drosophila IAP antagonists form multimeric complexes to promote cell death

Apoptosis is a specific form of cell death that is important for normal development and tissue homeostasis. Caspases are critical executioners of apoptosis, and living cells prevent their inappropriate activation through inhibitor of apoptosis proteins (IAPs). In Drosophila, caspase activation depends on the IAP antagonists, Reaper (Rpr), Head involution defective (Hid), and Grim. These protein...

متن کامل

c-IAP1 is cleaved by caspases to produce a proapoptotic C-terminal fragment.

Although human c-IAP1 and c-IAP2 have been reported to possess antiapoptotic activity against a variety of stimuli in several mammalian cell types, we observed that full-length c-IAP1 and c-IAP2 failed to protect cells from apoptosis induced by Bax overexpression, tumor necrosis factor alpha treatment or Sindbis virus infection. However, deletion of the C-terminal RING domains of c-IAP1 and c-I...

متن کامل

Translocation of the inhibitor of apoptosis protein c-IAP1 from the nucleus to the Golgi in hematopoietic cells undergoing differentiation: a nuclear export signal-mediated event.

The caspase inhibitor and RING finger-containing protein cellular inhibitor of apoptosis protein 1 (c-IAP1) has been shown to be involved in both apoptosis inhibition and signaling by members of the tumor necrosis factor (TNF) receptor family. The protein is regulated transcriptionally (eg, is a target for nuclear factor-kappaB [NF-kappaB]) and can be inhibited by mitochondrial proteins release...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 187  شماره 

صفحات  -

تاریخ انتشار 2009